This paper proposes an automated method for the segmentation and extraction of the posterior segment of the human eye, including the vitreous, retina, choroid, and sclera compartments, using multi-vendor optical coherence tomography (OCT) scans. The proposed method works in two phases. First extracts the retinal pigment epithelium (RPE) layer by applying the adaptive thresholding technique to identify the retina-choroid junction. Then, it exploits the structure tensor guided approach to extract the inner limiting membrane (ILM) and the choroidal stroma (CS) layers, locating the vitreous-retina and choroid-sclera junctions in the candidate OCT scan. Furthermore, these three junction boundaries are utilized to conduct posterior eye compartmentalization effectively for both healthy and disease eye OCT scans. The proposed framework is evaluated over 1000 OCT scans, where it obtained the mean intersection over union (IoU) and mean Dice similarity coefficient (DSC) scores of 0.874 and 0.930, respectively.
翻译:本文建议采用一种自动化的方法,通过多发光学一致性照相仪(OCT)扫描,将人类眼睛的后部部分进行分解和提取,包括振动、视网膜、类固醇和clesra隔板,使用多发光学统一照相仪(OCT)扫描法。提议的方法分两个阶段运作。首先通过应用适应性临界线技术确定视网膜合体连接点,抽取视网膜内限制膜(ILM)和CS(CS)层的结构振动导引力法,将振动-视网膜和甲状脑膜交叉点定位在候选的OCT扫描中。此外,这三个交界点被用来有效地进行外观分化,以便进行健康眼部和疾病眼部的OCT扫描。对1 000次的OCT扫描对拟议框架进行了评价,其中分别获得0.874和0.930个平均相交点和平均Dice相似系数分数。