项目名称: 路表光催化降解汽车尾气机理研究及多孔陶瓷骨架负载光催化路面材料开发

项目编号: No.51278515

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 建筑科学

项目作者: 唐伯明

作者单位: 重庆交通大学

项目金额: 85万元

中文摘要: 汽车尾气是大气环境的主要污染源之一,其中接近路表区域空气污染尤其严重,项目拟开发一种多孔陶瓷骨架负载光催化材料,将其应用于路面有效降解大气环境中的汽车尾气污染物。首先对汽车尾气中污染物组分进行分析,研究污染物的光催化降解机理。采用稀土离子改性技术制备高效光催化剂,利用分子模拟技术研究稀土离子掺杂改性在二氧化钛晶体中形成的杂质能级位置以及掺杂改性对二氧化钛晶型、晶粒尺寸和光谱吸收的影响。采取多孔陶瓷骨架负载的方式将光催化材料应用于道路表面,以提高光催化材料的耐磨耗性和对汽车尾气污染物的吸附性能。利用分子模拟技术研究多孔陶瓷骨架光催化材料对污染物的吸附作用、催化降解性能以及材料的力学性能随微观结构的变化关系。最后应用所开发的多孔陶瓷骨架负载光催化材料铺设试验路,对材料的降解、耐磨耗、耐灰尘污染等路用性能进行试验研究。该技术的研究将对减少汽车尾气污染及改善道路环境产生重要意义。

中文关键词: 稀土改性;二氧化钛;分子模拟;光催化;路面应用

英文摘要: The automobile exhaust is the main source of atmospheric pollution. Especially, the most severe pollution area is the near-ground air. To alleviate this problem, a kind of a porous ceramics loaded photocatalyst for pavement is prepared, which can effectively degraded the automobile exhaust. The pollutant compositions of automobile exhaust are analyzed firstly and the degradation mechanism is studied. The technology of rare-earth ion addition is used to obtain high-efficiency catalyst. The molecular dynamics simulation method is used to analyze the location of impurity energy level resulted from TiO2 with rare earth ions, and to analyze the effect of doping modification on crystal form, crystalline size of TiO2 and spectrum absorption. The porous ceramics skeleton loaded photocatalytic materials are applied on pavement to realize the exhaust degradation and this skeleton structure should has good anti-wear property. In addition, molecular dynamics simulation method is also used to simulate the change law of the absorbing effect, photocatalytic and mechanical property of photocatalytic materials with the variation of microstructure. The porous ceramics skeleton loaded photocatalytic materials will be applied on pavement and its performance of degradation, anti-wearing and dust resistance are studied. This technol

英文关键词: Rare earth modification;titanium dioxide;molecular simulation;photocatalysis;Pavement application

成为VIP会员查看完整内容
0

相关内容

人工智能到深度学习:药物发现的机器智能方法
专知会员服务
35+阅读 · 2022年5月6日
区块链能源电力行业应用实践报告
专知会员服务
39+阅读 · 2022年3月22日
专知会员服务
20+阅读 · 2021年8月23日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
58+阅读 · 2021年4月22日
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
17+阅读 · 2019年3月28日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员