Chat models, such as ChatGPT, have shown impressive capabilities and have been rapidly adopted across numerous domains. However, these models are only accessible through a restricted API, creating barriers for new research and progress in the field. We propose a pipeline that can automatically generate a high-quality multi-turn chat corpus by leveraging ChatGPT to engage in a conversation with itself. Subsequently, we employ parameter-efficient tuning to enhance LLaMA, an open-source large language model. The resulting model, named Baize, demonstrates good performance in multi-turn dialogues with guardrails that minimize potential risks.
翻译:聊天模型(比如 ChatGPT)已经展示了非常出色的能力,已经在众多领域被广泛采用。但是,这些模型只能通过受限制的应用程序接口访问,为新研究和进展设置了阻碍。我们提出了一种流程,可通过利用 ChatGPT 与自身进行对话,自动生成高质量的多轮聊天语料。随后,我们使用参数高效调整来增强 LLaMA,一种开源的大型语言模型。结果模型名为Baize,展示出良好的多轮对话表现,同时设置防范潜在风险的保护措施。