The knowledge of a deep learning model may be transferred to a student model, leading to intellectual property infringement or vulnerability propagation. Detecting such knowledge reuse is nontrivial because the suspect models may not be white-box accessible and/or may serve different tasks. In this paper, we propose ModelDiff, a testing-based approach to deep learning model similarity comparison. Instead of directly comparing the weights, activations, or outputs of two models, we compare their behavioral patterns on the same set of test inputs. Specifically, the behavioral pattern of a model is represented as a decision distance vector (DDV), in which each element is the distance between the model's reactions to a pair of inputs. The knowledge similarity between two models is measured with the cosine similarity between their DDVs. To evaluate ModelDiff, we created a benchmark that contains 144 pairs of models that cover most popular model reuse methods, including transfer learning, model compression, and model stealing. Our method achieved 91.7% correctness on the benchmark, which demonstrates the effectiveness of using ModelDiff for model reuse detection. A study on mobile deep learning apps has shown the feasibility of ModelDiff on real-world models.


翻译:深层次学习模式的知识可能会转移到学生模式,导致知识产权侵犯或脆弱性的传播。 检测这种知识的再利用是非技术性的, 因为疑似模型可能不是白箱, 并且/ 或者可能服务于不同的任务 。 在本文中, 我们提出模型Diff, 这是一种基于测试的深层次学习模式相似性比较方法 。 我们不直接比较两个模型的重量、 激活或产出, 而是比较它们在同一套测试投入中的行为模式。 具体地说, 模型的行为模式以决定距离矢量( DDV) 表示( DDV), 其中每个要素是模型对一对投入的反应之间的距离。 两个模型之间的知识相似性与它们的DDVs相似性测量。 为了评估模型Diff, 我们创建了一个基准, 包含144对模型, 涵盖最受欢迎的模式再利用方法, 包括转移学习、 模型压缩和模型盗窃。 我们的方法在基准上实现了91.7%的正确度, 这表明使用模型Diff对一对投入的响应。 关于移动深层学习应用模型的模型的可行性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年1月24日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
3+阅读 · 2017年11月21日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Top
微信扫码咨询专知VIP会员