The knowledge of a deep learning model may be transferred to a student model, leading to intellectual property infringement or vulnerability propagation. Detecting such knowledge reuse is nontrivial because the suspect models may not be white-box accessible and/or may serve different tasks. In this paper, we propose ModelDiff, a testing-based approach to deep learning model similarity comparison. Instead of directly comparing the weights, activations, or outputs of two models, we compare their behavioral patterns on the same set of test inputs. Specifically, the behavioral pattern of a model is represented as a decision distance vector (DDV), in which each element is the distance between the model's reactions to a pair of inputs. The knowledge similarity between two models is measured with the cosine similarity between their DDVs. To evaluate ModelDiff, we created a benchmark that contains 144 pairs of models that cover most popular model reuse methods, including transfer learning, model compression, and model stealing. Our method achieved 91.7% correctness on the benchmark, which demonstrates the effectiveness of using ModelDiff for model reuse detection. A study on mobile deep learning apps has shown the feasibility of ModelDiff on real-world models.
翻译:深层次学习模式的知识可能会转移到学生模式,导致知识产权侵犯或脆弱性的传播。 检测这种知识的再利用是非技术性的, 因为疑似模型可能不是白箱, 并且/ 或者可能服务于不同的任务 。 在本文中, 我们提出模型Diff, 这是一种基于测试的深层次学习模式相似性比较方法 。 我们不直接比较两个模型的重量、 激活或产出, 而是比较它们在同一套测试投入中的行为模式。 具体地说, 模型的行为模式以决定距离矢量( DDV) 表示( DDV), 其中每个要素是模型对一对投入的反应之间的距离。 两个模型之间的知识相似性与它们的DDVs相似性测量。 为了评估模型Diff, 我们创建了一个基准, 包含144对模型, 涵盖最受欢迎的模式再利用方法, 包括转移学习、 模型压缩和模型盗窃。 我们的方法在基准上实现了91.7%的正确度, 这表明使用模型Diff对一对投入的响应。 关于移动深层学习应用模型的模型的可行性。