This paper presents a novel and fast solver for the J2-perturbed Lambert problem. The solver consists of an intelligent initial guess generator combined with a differential correction procedure. The intelligent initial guess generator is a deep neural network that is trained to correct the initial velocity vector coming from the solution of the unperturbed Lambert problem. The differential correction module takes the initial guess and uses a forward shooting procedure to further update the initial velocity and exactly meet the terminal conditions. Eight sample forms are analyzed and compared to find the optimum form to train the neural network on the J2-perturbed Lambert problem. The accuracy and performance of this novel approach will be demonstrated on a representative test case: the solution of a multi-revolution J2-perturbed Lambert problem in the Jupiter system. We will compare the performance of the proposed approach against a classical standard shooting method and a homotopy-based perturbed Lambert algorithm. It will be shown that, for a comparable level of accuracy, the proposed method is significantly faster than the other two.
翻译:本文为 J2- 受扰动的兰伯特 问题提供了一个新颖和快速的解决方案。 解答器由智能初步猜想生成器和差异校正程序组成。 智能初步猜想生成器是一个深神经网络, 受过训练, 能够纠正来自无扰动的兰伯特问题解决方案的初始速度矢量。 差异校正模块首先进行猜测, 并使用前方射击程序来进一步更新初始速度, 并完全符合终端条件 。 对八个样本表格进行了分析, 以找到在 J2- 受扰动的兰伯特 问题上培训神经网络的最佳形式 。 这个新颖方法的精确度和性能将在一个具有代表性的测试案例上展示: 木星系统中多革命 J2- 受扰动的兰伯特问题的解决办法 。 我们将比较拟议方法的性能与经典标准射击法和以同质式手基的扰动兰伯特 算法。 将显示, 在相似的精确度上, 提议的方法比其他两种要快得多 。