The use of cameras and computational algorithms for noninvasive, low-cost and scalable measurement of physiological (e.g., cardiac and pulmonary) vital signs is very attractive. However, diverse data representing a range of environments, body motions, illumination conditions and physiological states is laborious, time consuming and expensive to obtain. Synthetic data have proven a valuable tool in several areas of machine learning, yet are not widely available for camera measurement of physiological states. Synthetic data offer "perfect" labels (e.g., without noise and with precise synchronization), labels that may not be possible to obtain otherwise (e.g., precise pixel level segmentation maps) and provide a high degree of control over variation and diversity in the dataset. We present SCAMPS, a dataset of synthetics containing 2,800 videos (1.68M frames) with aligned cardiac and respiratory signals and facial action intensities. The RGB frames are provided alongside segmentation maps. We provide precise descriptive statistics about the underlying waveforms, including inter-beat interval, heart rate variability, and pulse arrival time. Finally, we present baseline results training on these synthetic data and testing on real-world datasets to illustrate generalizability.
翻译:使用照相机和计算算算算法对生理(如心脏和肺部)生命迹象进行非侵入性、低成本和可缩放性测量非常有吸引力,然而,代表各种环境、身体运动、光化条件和生理状态的各种数据十分繁琐、耗时和昂贵,难以获取。合成数据在机器学习的若干领域证明是宝贵的工具,但在对生理状态进行照相测量方面却不能广泛获得。合成数据提供了“完美”标签(例如,没有噪音和精确同步)、可能无法以其他方式获得的标签(例如,精确的像素级分解图),并提供了对数据集差异和多样性的高度控制。我们提供了一套合成合成数据集,包含2 800个视频(1.68M框架),配有一致的心和呼吸信号以及面部位动作。RGB框架与分解图一起提供。我们提供了关于基本波形的精确描述性统计数据,包括间间隔、心率变化和脉搏到达时间。最后,我们展示了这些关于合成数据的基本数据。我们展示了这些关于合成世界的基线数据。