SHAP explanations are a popular feature-attribution mechanism for explainable AI. They use game-theoretic notions to measure the influence of individual features on the prediction of a machine learning model. Despite a lot of recent interest from both academia and industry, it is not known whether SHAP explanations of common machine learning models can be computed efficiently. In this paper, we establish the complexity of computing the SHAP explanation in three important settings. First, we consider fully-factorized data distributions, and show that the complexity of computing the SHAP explanation is the same as the complexity of computing the expected value of the model. This fully-factorized setting is often used to simplify the SHAP computation, yet our results show that the computation can be intractable for commonly used models such as logistic regression. Going beyond fully-factorized distributions, we show that computing SHAP explanations is already intractable for a very simple setting: computing SHAP explanations of trivial classifiers over naive Bayes distributions. Finally, we show that even computing SHAP over the empirical distribution is #P-hard.
翻译:SHAP 解释是解释可解释的 AI 的一种流行的特性归属机制。 它们使用游戏理论概念来测量每个特性对机器学习模型预测的影响。 尽管学术界和工业界最近都对SHAP 解释通用机器学习模型非常感兴趣, 但尚不清楚能否有效计算出通用机器学习模型的SHAP解释。 在本文中, 我们确定在三个重要环境中计算 SHAP 解释的复杂性。 首先, 我们考虑完全因素化的数据分布, 并显示计算SHAP解释的复杂性与计算模型预期值的复杂性相同。 这种完全因素化的设置常常用来简化SHAP计算, 但我们的结果表明, 计算方法对于通常使用的模型( 如物流回归)可能很难。 超越充分因素分布, 我们显示, 计算SHAP 解释对于一个非常简单的设置已经难以操作: 计算 SHAP 解释小分类器相对于天ane Bayes 分布。 最后, 我们显示, 即使计算SHAP 相对于经验分布的复杂性是 #P 硬 。