We re-consider Leadbetter's extremal index for stationary sequences. It has interpretation as reciprocal of the expected size of an extremal cluster above high thresholds. We focus on heavy-tailed time series, in particular on regularly varying stationary sequences, and discuss recent research in extreme value theory for these models. A regularly varying time series has multivariate regularly varying finite-dimensional distributions. Thanks to results by Basrak and Segers we have explicit representations of the limiting cluster structure of extremes, leading to explicit expressions of the limiting point process of exceedances and the extremal index as a summary measure of extremal clustering. The extremal index appears in various situations which do not seem to be directly related, like the convergence of maxima and point processes. We consider different representations of the extremal index which arise from the considered context. We discuss the theory and apply it to a regularly varying AR(1) process and the solution to an affine stochastic recurrence equation
翻译:我们重新考虑了Beadbretter的固定序列极限指数。 它的解读是对高阈值以上极端群集的预期尺寸的对等。 我们侧重于重尾时间序列, 特别是经常不同的固定序列, 并讨论这些模型的极端价值理论的最近研究。 一个经常变化的时间序列经常有多种变异性, 通常的有限维度分布。 由于Basak和Segers的结果, 我们对极端的有限群集结构有明确的表述, 导致对超值限制点进程和极端指数的清晰表达, 作为极端群集的简要测量。 极端指数出现在各种似乎没有直接关联的情况中, 像最大点进程的趋同一样。 我们考虑从所考虑的背景中产生的极端指数的不同表述。 我们讨论该理论, 并将其应用于一个经常变化的AR(1) 进程, 以及一个折合的重复方程式的解决方案。 我们讨论该理论, 并把它应用于一个经常变化的AR(1) 。