模型的可解释性是机器学习领域的重要研究课题,主要关注两个方向,一个是提升模型本身的可解释性,如引入注意力机制、解耦表示学习等技术;另一个是对黑盒模型的事后解释,如特征掩码技术、可视化技术等。图结构提供了额外的拓扑信息,也对可解释技术提出了更高的要求。本文将介绍在KDD 2020上发表的两个该方向最新工作。
第一个工作是Research Track的《XGNN: Towards Model-Level Explanations of Graph Neural Networks》,关注黑盒模型的事后解释,提出了一种基于输入优化的图神经网络事后解释方法。
第二个工作是Applied Data Science Track的《Explainable classification of brain networks via contrast subgraphs》,关注提升模型本身的可解释性,提出了一种基于对比子图的可解释脑网络分类方法。