We propose a Web-Mashup Application Service Framework for Multivariate Time Series Analytics (MTSA) that supports the services of model definitions, querying, parameter learning, model evaluations, data monitoring, decision recommendations, and web portals. This framework maintains the advantage of combining the strengths of both the domain-knowledge-based and the formal-learning-based approaches and is designed for a more general class of problems over multivariate time series. More specifically, we identify a general-hybrid-based model, MTSA-Parameter Estimation, to solve this class of problems in which the objective function is maximized or minimized from the optimal decision parameters regardless of particular time points. This model also allows domain experts to include multiple types of constraints, e.g., global constraints and monitoring constraints. We further extend the MTSA data model and query language to support this class of problems for the services of learning, monitoring, and recommendation. At the end, we conduct an experimental case study for a university campus microgrid as a practical example to demonstrate our proposed framework, models, and language.
翻译:我们提出多变时间序列分析(MTSA)网络元件应用服务框架,支持示范定义、查询、参数学习、模型评估、数据监测、决定建议和网络门户等服务,保持将基于域的知识办法和正规学习办法的优势结合起来的优势,并针对多变时间序列中更一般的问题类别。更具体地说,我们确定一个基于普通的基于杂交的模型(MTSA-Paraterm Estimation),以解决这一类问题,即不论特定时间点,从最佳决定参数中最大限度地发挥或尽量减少目标功能,这一模型还允许域专家包括多种类型的制约因素,例如全球制约因素和监测制约因素。我们进一步扩展MTSA数据模型和查询语言,以支持学习、监测和建议服务方面的这类问题。最后,我们为一所大学的微电网进行试验性案例研究,作为展示我们拟议框架、模型和语言的实用范例。