In this paper we propose a novel procedure to construct a confidence interval for multivariate time series predictions using long short term memory network. The construction uses a few novel block bootstrap techniques. We also propose an innovative block length selection procedure for each of these schemes. Two novel benchmarks help us to compare the construction of this confidence intervals by different bootstrap techniques. We illustrate the whole construction through S\&P $500$ and Dow Jones Index datasets.
翻译:在本文中,我们提出了一个新程序,用长期短期内存网络为多变时间序列预测建立一个信任区间。 建筑使用一些新颖的区块护靴技术。 我们还为每个计划提出了一个创新的区块选择程序。 两个新基准有助于我们比较不同区块技术构建的这种信任区间。 我们用S ⁇ P 500美元和道琼斯指数数据集来说明整个建筑。