We study dangling-aware entity alignment in knowledge graphs (KGs), which is an underexplored but important problem. As different KGs are naturally constructed by different sets of entities, a KG commonly contains some dangling entities that cannot find counterparts in other KGs. Therefore, dangling-aware entity alignment is more realistic than the conventional entity alignment where prior studies simply ignore dangling entities. We propose a framework using mixed high-order proximities on dangling-aware entity alignment. Our framework utilizes both the local high-order proximity in a nearest neighbor subgraph and the global high-order proximity in an embedding space for both dangling detection and entity alignment. Extensive experiments with two evaluation settings shows that our framework more precisely detects dangling entities, and better aligns matchable entities. Further investigations demonstrate that our framework can mitigate the hubness problem on dangling-aware entity alignment.
翻译:我们研究知识图中相交一致的实体(KGs),这是一个探索不足但重要的问题。由于不同的KGs是由不同实体组成的自然结构,不同的KGs通常包含一些无法在其他KGs中找到对应方的相交一致的实体。因此,与传统实体的对齐相比,在先前的研究中,相交一致的实体的对齐比常规实体的对齐更为现实,因为前者只是忽略了相交一致的实体。我们提出了一个框架,在对相交一致的实体对齐时使用混合高顺序的近似关系。我们的框架利用了相邻子集的当地高层级接近性和嵌入空间的全球性高端接近关系,以进行交接检测和实体对齐。与两个评估环境进行的广泛实验表明,我们的框架更准确地检测了相交错实体,更好地对齐了相匹配的实体。进一步的调查表明,我们的框架可以缓解在相交接连接实体对接的对接点上的枢纽问题。