Qualitative and quantitative approaches to reasoning about uncertainty can lead to different logical systems for formalizing such reasoning, even when the language for expressing uncertainty is the same. In the case of reasoning about relative likelihood, with statements of the form $\varphi\succsim\psi$ expressing that $\varphi$ is at least as likely as $\psi$, a standard qualitative approach using preordered preferential structures yields a dramatically different logical system than a quantitative approach using probability measures. In fact, the standard preferential approach validates principles of reasoning that are incorrect from a probabilistic point of view. However, in this paper we show that a natural modification of the preferential approach yields exactly the same logical system as a probabilistic approach--not using single probability measures, but rather sets of probability measures. Thus, the same preferential structures used in the study of non-monotonic logics and belief revision may be used in the study of comparative probabilistic reasoning based on imprecise probabilities.
翻译:对不确定性进行推理的定性和定量方法可能导致使这种推理正规化的不同逻辑系统,即使表达不确定性的语言相同。在相对可能性的推理中,如果以美元为单位的表态表示,美元至少可能与美元等值,则使用事先排序的优惠结构的标准质量方法会产生与使用概率计量的定量方法截然不同的逻辑系统。事实上,标准优惠方法验证了从概率角度看不正确的推理原则。然而,在本文中,我们表明,对优惠方法的自然修改会产生与概率方法完全相同的逻辑系统,而不是使用单一概率计量,而是采用几套概率计量方法。因此,在研究基于不精确概率的比较概率推理时,可以使用非流动逻辑和信仰修正研究中使用的同样的优惠结构。