Although spoken language understanding (SLU) has achieved great success in high-resource languages, such as English, it remains challenging in low-resource languages mainly due to the lack of high quality training data. The recent multilingual code-switching approach samples some words in an input utterance and replaces them by expressions in some other languages of the same meaning. The multilingual code-switching approach achieves better alignments of representations across languages in zero-shot cross-lingual SLU. Surprisingly, all existing multilingual code-switching methods disregard the inherent semantic structure in SLU, i.e., most utterances contain one or more slots, and each slot consists of one or more words. In this paper, we propose to exploit the "utterance-slot-word" structure of SLU and systematically model this structure by a multi-level contrastive learning framework at the utterance, slot, and word levels. We develop novel code-switching schemes to generate hard negative examples for contrastive learning at all levels. Furthermore, we develop a label-aware joint model to leverage label semantics for cross-lingual knowledge transfer. Our experimental results show that our proposed methods significantly improve the performance compared with the strong baselines on two zero-shot cross-lingual SLU benchmark datasets.


翻译:虽然口语理解(SLU)在英语等高资源语言方面取得了巨大成功,但在低资源语言方面仍然具有挑战性,主要原因是缺乏高质量的培训数据。最近的多语言代码转换方法在输入语句中抽取了一些词,用其他语言的表达方式取而代之。多语言代码转换方法在语言之间实现了更好的一致,在语言上跨语言语言语言的零点跨语言语言语言语言的表达方式。令人惊讶的是,所有现有的多语言代码转换方法都无视SLU固有的语义结构,即大多数语句包含一个或一个以上的空格,每个空格都包含一个或一个以上的单词。在本文件中,我们提议利用SLU的“低调-点字”结构,并系统地通过一个多层次的反向学习框架来模拟这一结构。我们开发了新的代码转换方法,以便为各级的对比性学习生成了硬的负面例子。此外,我们开发了一个标签识别联合模型,用以利用定义词义词义的词义结构,将双面基线性数据转换结果显著地展示了我们提出的高水平基准数据。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
13+阅读 · 2020年4月12日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员