Suture needle localization plays a crucial role towards autonomous suturing. To track the 6D pose of a suture needle robustly, previous approaches usually add markers on the needle or perform complex operations for feature extraction, making these methods difficult to be applicable to real-world environments. Therefore in this work, we present a novel approach for markerless suture needle pose tracking using Bayesian filters. A data-efficient feature point detector is trained to extract the feature points on the needle. Then based on these detections, we propose a novel observation model that measures the overlap between the detections and the expected projection of the needle, which can be calculated efficiently. In addition, for the proposed method, we derive the approximation for the covariance of the observation noise, making this model more robust to the uncertainty in the detections. The experimental results in simulation show that the proposed observation model achieves low tracking errors of approximately 1.5mm in position in space and 1 degree in orientation. We also demonstrate the qualitative results of our trained markerless feature detector combined with the proposed observation model in real-world environments. The results show high consistency between the projection of the tracked pose and that of the real pose.


翻译:缝合针的本地化对于自动缝合具有关键作用。 为了强有力地跟踪针缝缝缝缝缝缝缝缝缝的6D结构, 以往的方法通常会在针缝缝上添加标记, 或进行复杂的地貌提取操作, 使这些方法难以适用于真实世界环境。 因此, 在这项工作中, 我们为无标记缝缝合针使用巴伊西亚过滤器进行跟踪提出了一个新颖的方法。 一个数据高效特征点检测器经过培训, 以提取针线上的特征点。 然后根据这些检测结果, 我们提出一个新的观测模型, 以测量针线的探测和预期投射之间的重叠, 并且可以有效计算。 此外, 对于拟议的方法, 我们得出观测噪音的共差近近, 使这一模型对检测的不确定性更加有力。 模拟实验结果表明, 拟议的观测模型在空间位置和方向上达到大约1.5毫米左右的低跟踪误差。 我们还展示了我们经过培训的无标记特征检测器与现实世界环境中拟议观测模型的定性结果。 所得出的结果显示, 跟踪图象与真实面的形状的投影的高度一致。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2021年4月16日
【斯坦福CS329S】机器学习系统设计导论,92页ppt
专知会员服务
39+阅读 · 2021年1月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
已删除
将门创投
4+阅读 · 2018年7月31日
Motion Detection using CSI from Raspberry Pi 4
Arxiv
0+阅读 · 2021年11月17日
Arxiv
7+阅读 · 2017年12月26日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
已删除
将门创投
4+阅读 · 2018年7月31日
Top
微信扫码咨询专知VIP会员