To pursue comprehensive performance, recent text detectors improve detection speed at the expense of accuracy. They adopt shrink-mask based text representation strategies, which leads to a high dependency of detection accuracy on shrink-masks. Unfortunately, three disadvantages cause unreliable shrink-masks. Specifically, these methods try to strengthen the discrimination of shrink-masks from the background by semantic information. However, the feature defocusing phenomenon that coarse layers are optimized by fine-grained objectives limits the extraction of semantic features. Meanwhile, since both shrink-masks and the margins belong to texts, the detail loss phenomenon that the margins are ignored hinders the distinguishment of shrink-masks from the margins, which causes ambiguous shrink-mask edges. Moreover, false-positive samples enjoy similar visual features with shrink-masks. They aggravate the decline of shrink-masks recognition. To avoid the above problems, we propose a Zoom Text Detector (ZTD) inspired by the zoom process of the camera. Specifically, Zoom Out Module (ZOM) is introduced to provide coarse-grained optimization objectives for coarse layers to avoid feature defocusing. Meanwhile, Zoom In Module (ZIM) is presented to enhance the margins recognition to prevent detail loss. Furthermore, Sequential-Visual Discriminator (SVD) is designed to suppress false-positive samples by sequential and visual features. Experiments verify the superior comprehensive performance of ZTD.


翻译:为了追求全面的性能,最近的文本探测器可以提高探测速度,以牺牲准确性为代价。它们采用基于缩略片的文本代表战略,从而导致在缩略片上高度依赖检测准确性。不幸的是,三个缺点导致不可靠的缩略片边缘。具体地说,这些方法试图通过语义信息,从背景中强化对缩略片的区别。然而,由于粗糙层被细微磨损的目标优化的特征去重点化现象限制了对语义特征的提取。同时,由于缩微片和边距都属于文本,因此,对边距忽视的详细损失现象阻碍了对缩略微质片与边际的区分,从而导致微缩片边缘边缘的偏差。此外,假阳性样本具有与缩微片相相似的视觉特征。它们加剧了对缩微量值认识的下降。为避免上述问题,我们提议由相机缩微缩图解过程所启发的缩放文本检测器(ZTD)。具体地说,缩略图模块(ZOM)被引入了详细的缩缩缩缩缩缩缩缩缩缩图,目的是将Simalimalalimal laimal Blaimal vial Dial lagistrisal view view disal dal disal disgradududududuction。

0
下载
关闭预览

相关内容

抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月19日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员