Text mining and information extraction for the medical domain has focused on scientific text generated by researchers. However, their direct access to individual patient experiences or patient-doctor interactions can be limited. Information provided on social media, e.g., by patients and their relatives, complements the knowledge in scientific text. It reflects the patient's journey and their subjective perspective on the process of developing symptoms, being diagnosed and offered a treatment, being cured or learning to live with a medical condition. The value of this type of data is therefore twofold: Firstly, it offers direct access to people's perspectives. Secondly, it might cover information that is not available elsewhere, including self-treatment or self-diagnoses. Named entity recognition and relation extraction are methods to structure information that is available in unstructured text. However, existing medical social media corpora focused on a comparably small set of entities and relations and particular domains, rather than putting the patient into the center of analyses. With this paper we contribute a corpus with a rich set of annotation layers following the motivation to uncover and model patients' journeys and experiences in more detail. We label 14 entity classes (incl. environmental factors, diagnostics, biochemical processes, patients' quality-of-life descriptions, pathogens, medical conditions, and treatments) and 20 relation classes (e.g., prevents, influences, interactions, causes) most of which have not been considered before for social media data. The publicly available dataset consists of 2,100 tweets with approx. 6,000 entity and 3,000 relation annotations. In a corpus analysis we find that over 80 % of documents contain relevant entities. Over 50 % of tweets express relations which we consider essential for uncovering patients' narratives about their journeys.
翻译:医学领域的文本挖掘和信息提取侧重于研究人员生成的科学文本。然而,他们直接获取病人个人经验或病人-医生互动的渠道可能有限。在社交媒体上提供的信息,例如病人及其亲属提供的信息,补充了科学文本的知识。它反映了病人的旅程及其关于发展症状过程的主观观点,被诊断和提供治疗、治愈或学习以适应医疗状况。因此,这类数据的价值是双重的:首先,它提供了直接获取人们观点的渠道。第二,它可能涵盖其他地方无法获得的信息,包括自我治疗或自我诊断。在社交媒体上提供的信息,例如病人及其亲属提供的信息,可以补充科学文本中的知识。然而,现有的医疗社会媒体的旅程及其主观视角侧重于发展症状的过程,被诊断和提供治疗,而不是将病人置于医疗中心的中心。我们提供一套内容丰富的说明层,在发现和模拟病人的旅行和经历之后,我们可以在更详细的情况下,包括自我治疗或自我诊断。我们给14个实体分类(包括20种医学、环境诊断和病理学等级,其中含有20种病理学分析、生物病理分析、生物病理学分析、生物病理学分析、生物病理学分析等,在20个实体的路径上,我们有关于病理分析,我们发现和病理学、生物病理分析,在20种、病理分析中,在研究、生物病理学学学学学分析中,在20个实体的历分析中,在20个阶段的历分析中,在研究、生物学、生物学、生物学、生物学、生物学分析中,在20种、生物学系的历分析中,在20种、生物学学系的历的历中,在20种。我们观察理学理分析之前,在研究。