We prove that for any triangle-free intersection graph of $n$ axis-parallel segments in the plane, the independence number $\alpha$ of this graph is at least $\alpha \ge n/4 + \Omega(\sqrt{n})$. We complement this with a construction of a graph in this class satisfying $\alpha \le n/4 + c \sqrt{n}$ for an absolute constant $c$, which demonstrates the optimality of our result.
翻译:我们证明,对于平面中任何无三角形的轴-平方块交叉图,本图的独立数字为$\alpha$,至少是$\alpha\ge n/4 +\\ Omega(\ sqrt{n})$。我们用这一类中的图表来补充这个数字,用绝对不变的美元计算,用绝对恒定值$\alpha\le n/4 + c\sqrt{n}$来表示我们的结果的最佳性。