Predicting the throughput of WLAN deployments is a classic problem that occurs in the design of robust and high performance WLAN systems. However, due to the increasingly complex communication protocols and the increase in interference between devices in denser and denser WLAN deployments, traditional methods either have substantial runtime or enormous prediction error and hence cannot be applied in downstream tasks. Recently, Graph Neural Networks have been proven to be powerful graph analytic models and have been broadly applied to various networking problems such as link scheduling and power allocation. In this work, we propose HTNet, a specialized Heterogeneous Temporal Graph Neural Network that extracts features from dynamic WLAN deployments. Analyzing the unique graph structure of WLAN deployment graphs, we show that HTNet achieves the maximum expressive power on each snapshot. Based on a powerful message passing scheme, HTNet requires fewer number of layers compared with other GNN-based methods which entails less supporting data and runtime. To evaluate the performance of HTNet, we prepare six different setups with more than five thousands dense dynamic WLAN deployments that cover a wide range of real-world scenarios. HTNet achieves the lowest prediction error on all six setups with an average improvement of 25.3\% over the state-of-the-art methods.


翻译:摘要:预测无线局域网部署的吞吐量是一个经典的问题,它出现在设计稳健和高性能WLAN系统的过程中。然而,由于通信协议的日益复杂以及在越来越密集的WLAN部署中设备之间的干扰增加,传统方法要么运行时间巨大,要么具有巨大的预测误差,因此不能应用于下游任务。最近,图神经网络被证明是强大的图分析模型,并广泛应用于各种网络问题,如链路调度和功率分配。在这项工作中,我们提出了HTNet,一种专门的异构时间图神经网络,从动态WLAN部署中提取特征。通过分析WLAN部署图的独特图结构,我们展示了HTNet在每个快照上实现了最大的表现力。基于强大的消息传递方案,HTNet需要比其他基于GNN的方法更少的层数,这意味着需要更少的支持数据和运行时间。为了评估HTNet的性能,我们准备了六个不同的设置,拥有超过五千个密集的动态WLAN部署,涵盖了各种真实世界的场景。HTNet在所有六个设置中都获得了最低的预测误差,平均改进了25.3%以上的最新技术方法。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【Google AI】鲁棒图神经网络,Robust Graph Neural Networks
专知会员服务
37+阅读 · 2022年3月9日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
82+阅读 · 2020年11月19日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
35+阅读 · 2021年1月27日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
相关论文
Arxiv
22+阅读 · 2022年3月31日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
35+阅读 · 2021年1月27日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
10+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员