We consider the classic problem of makespan minimization on a fixed number $n$ of machines with possibly different speeds (``uniform machines''). In an attempt to improve the makespan, we allow a fixed number $s$ of jobs to be split between two or more machines. We show that makespan minimization on $n\geq 3$ uniform machines with $s$ split jobs can be solved in polynomial time whenever $s\geq n-2$, while it is {\sf NP}-complete otherwise even for identical machines. We provide a {\it Fully Polynomial-Time Approximation Scheme} ({\sf FPTAS}) to deal with the case $s < n-2$. The main technique we use is a two-way polynomial-time reduction between makespan-minimization with splitting and a second variant, which may be of independent interest, in which the makespan must be within a pre-specified interval. We prove that, for any fixed integer $n\geq 3$, the second variant can be solved in polynomial time if the length of the allowed interval is at least $(n-2)/n$ times the maximum job size, and it is {\sf NP}-complete otherwise even for identical machines. Using the same reduction, we implement a state-space-search algorithm for makespan minimization with any number $s$ of split jobs, and use it in computerized simulations to evaluate the effect of $s$ on the makespan.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Probabilistic Programming with Exact Conditions
Arxiv
0+阅读 · 2023年12月28日
Arxiv
0+阅读 · 2023年12月28日
Arxiv
0+阅读 · 2023年12月28日
Arxiv
11+阅读 · 2023年3月8日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Probabilistic Programming with Exact Conditions
Arxiv
0+阅读 · 2023年12月28日
Arxiv
0+阅读 · 2023年12月28日
Arxiv
0+阅读 · 2023年12月28日
Arxiv
11+阅读 · 2023年3月8日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员