In this paper, we work on the notion of k-synchronizability: a system is k-synchronizable if any of its executions, up to reordering causally independent actions, can be divided into a succession of k-bounded interaction phases. We show two results (both for mailbox and peer-to-peer automata): first, the reachability problem is decidable for k-synchronizable systems; second, the membership problem (whether a given system is k-synchronizable) is decidable as well. Our proofs fix several important issues in previous attempts to prove these two results for mailbox automata.
翻译:在本文中,我们研究K-同步概念:如果一个系统被处决,为了重新排列因果独立的行动,可以将其分为连续的K-范围互动阶段。我们展示了两个结果(信箱和同侪自动地图 ) : 首先,对于k-同步系统来说,可实现性问题是可以分解的; 其次,会籍问题(是否给定的系统是k-同步的)也是可以分解的。 在以前试图证明邮箱自动地图的这两个结果时,我们的证据解决了几个重要问题。