We are motivated by applications that need rich model classes to represent them. Examples of rich model classes include distributions over large, countably infinite supports, slow mixing Markov processes, etc. But such rich classes may be too complex to admit estimators that converge to the truth with convergence rates that can be uniformly bounded over the entire model class as the sample size increases (uniform consistency). However, these rich classes may still allow for estimators with pointwise guarantees whose performance can be bounded in a model dependent way. The pointwise angle of course has the drawback that the estimator performance is a function of the very unknown model that is being estimated, and is therefore unknown. Therefore, even if the estimator is consistent, how well it is doing may not be clear no matter what the sample size is. Departing from the dichotomy of uniform and pointwise consistency, a new analysis framework is explored by characterizing rich model classes that may only admit pointwise guarantees, yet all the information about the model needed to guage estimator accuracy can be inferred from the sample at hand. To retain focus, we analyze the universal compression problem in this data driven pointwise consistency framework.


翻译:我们的动机是需要丰富的模型类别来代表它们的应用程序。 丰富的模型类别的例子包括大型、可观的无限支持的分布, 缓慢混合的Markov过程等等。 但是,这类丰富类别可能过于复杂,无法接受那些随着样本规模的增加(统一一致性),能够统一地约束整个模型类别。 然而,这些丰富类别仍可能允许有点性保证的估算者,其性能可以以模型的依附方式约束。 点性观点当然有一个缺点,即估计者性能是正在估计的非常未知的模式的函数,因此是未知的。 因此,即使估计者是一致的,它正在做的很好可能并不明确,无论抽样大小是什么。除了统一和点性一致性的两极分法之外,探索新的分析框架,方法是将可能只接受点性保证的丰富模型类别定性,但是关于估算者模型准确性的所有信息都可以从样本中推断出来,因此无法被推断出来。 为了保持重点,我们要分析这一数据驱动的一致性框架的普遍压缩问题。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
28+阅读 · 2020年11月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2019年12月30日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
28+阅读 · 2020年11月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员