Attributes and objects can compose diverse compositions. To model the compositional nature of these concepts, it is a good choice to learn them as transformations, e.g., coupling and decoupling. However, complex transformations need to satisfy specific principles to guarantee rationality. Here, we first propose a previously ignored principle of attribute-object transformation: Symmetry. For example, coupling peeled-apple with attribute peeled should result in peeled-apple, and decoupling peeled from apple should still output apple. Incorporating the symmetry, we propose a transformation framework inspired by group theory, i.e., SymNet. It consists of two modules: Coupling Network and Decoupling Network. We adopt deep neural networks to implement SymNet and train it in an end-to-end paradigm with the group axioms and symmetry as objectives. Then, we propose a Relative Moving Distance (RMD) based method to utilize the attribute change instead of the attribute pattern itself to classify attributes. Besides the compositions of single-attribute and object, our RMD is also suitable for complex compositions of multiple attributes and objects when incorporating attribute correlations. SymNet can be utilized for attribute learning, compositional zero-shot learning and outperforms the state-of-the-art on four widely-used benchmarks. Code is at https://github.com/DirtyHarryLYL/SymNet.
翻译:属性和对象可以构成多种多样的构成。 要模拟这些概念的构成性质, 将它们作为变体来学习, 例如, 组合和脱钩。 但是, 复杂的变形需要满足特定的原则来保证理性。 在这里, 我们首先提出先前忽视的属性- 对象变换原则 : 对称 。 例如, 带属性剥皮的剥皮和属性剥皮的剥皮应导致剥皮, 并且从苹果中剥离的剥离仍应输出苹果。 纳入对称性, 我们提议了一个由群集理论( e. SymNet) 启发的变异框架。 它由两个模块组成: 组合网络和分解网络。 我们采用深层的神经网网络来实施 SymNet, 并将它训练成一个端对端模式。 然后, 我们提议一个相对移动距离( RMD) 方法来利用属性变异, 而不是属性图案本身来分类属性。 除了单项和对象的构成, 即 SymNet 和对象, 我们的 RMDMD 的属性组合也可以- 用于学习 的复杂状态 。 。 的特性- 和 等 的特性- 的特性- salmarial- slab- sal- slemal- slemalmal- slemal- slemalmal