Renewal equations are a popular approach used in modelling the number of new infections, i.e., incidence, in an outbreak. We develop a stochastic model of an outbreak based on a time-varying variant of the Crump-Mode-Jagers branching process. This model accommodates a time-varying reproduction number and a time-varying distribution for the generation interval. We then derive renewal-like integral equations for incidence, cumulative incidence and prevalence under this model. We show that the equations for incidence and prevalence are consistent with the so-called back-calculation relationship. We analyse two particular cases of these integral equations, one that arises from a Bellman-Harris process and one that arises from an inhomogeneous Poisson process model of transmission. We outline an argument to show that the incidence integral equations that arise from both of these specific models agree with the renewal equation used ubiquitously in infectious disease modelling. We present a numerical discretisation scheme to solve these equations, and use this scheme to estimate rates of transmission from serological prevalence of SARS-CoV-2 in the UK and historical incidence data on Influenza, Measles, SARS and Smallpox.
翻译:更新方程式是一种流行的方法,用来模拟新感染的数量,即爆发爆发中的发病率。我们根据Crump-Mode-Jagers分流过程的时间变化变异,开发了一个爆发爆发的随机模型。这个模型包含一个时间变化的复制数字和代间时间变化的分布。然后,我们在这个模型下为传染病的发病、累积发生率和流行度得出类似更新的完整方程式。我们显示,发病率和流行率的方程式与所谓的后算关系一致。我们分析了这两个综合方程式的两个具体案例,一个来自Bellman-Harris过程,另一个来自不相容的Poisson过程模式。我们概述了一个论点,以表明这两个特定模型产生的发病综合方程式同意在传染病建模中普遍使用的更新方程式。我们提出了一个数字分解方案,以解决这些方程式,并使用这个方案来估计SARS-COV-2在英国的血清流行率和SARS-Sirmas的历史数据。