Future private and public transportation will be dominated by Autonomous Vehicles (AV), which are potentially safer than regular vehicles. However, ensuring good performance for the autonomous features requires fast processing of heavy computational tasks. Providing each AV with powerful enough computing resources is certainly a practical solution but may result in increased AV cost and decreased driving range. An alternative solution being explored in research is to install low-power computing hardware on each AV and offload the heavy tasks to powerful nearby edge servers. In this case, the AV's reaction time depends on how quickly the navigation tasks are completed in the edge server. To reduce task completion latency, the edge servers must be equipped with enough network and computing resources to handle the vehicle demands. However, this demand shows large spatio-temporal variations. Thus, deploying the same amount of resources in different locations may lead to unnecessary resource over-provisioning. Taking these challenges into consideration, in this paper, we discuss the implications of deploying different amounts of resources in different city areas based on real traffic data to sustain peak versus average demand. Because deploying edge resources to handle the average demand leads to lower deployment costs and better system utilization, we then investigate how peak-hour demand affect the safe travel time of AVs and whether current turn-by-turn navigation apps would still provide the fastest travel route. The insights and findings of this paper will inspire new research that can considerably speed up the deployment of edge-assisted AVs in our society.


翻译:未来私人和公共运输将由可能比正常车辆更安全的自治车辆(AV)主导,但确保自主功能的良好运行需要快速处理繁重的计算任务。为每个AV提供强大的计算资源当然是一个切实可行的解决办法,但可能会导致AV成本增加和驾驶范围减少。研究中探讨的另一种解决办法是在每个AV上安装低功率的计算机硬件,并将繁重的任务卸下给附近强大的边缘服务器。在这种情况下,AV的反应时间取决于边缘服务器的导航任务完成速度有多快。为降低任务完成时间,边缘服务器必须配备足够的网络和计算资源来处理车辆需求。然而,这种需求显示出巨大的时空变化。因此,在不同地点部署同样多的资源可能会导致不必要的资源供给过度。我们在本文件中讨论根据实际交通数据在不同城市地区部署不同数量的资源以维持高峰和平均需求的影响。部署边缘资源处理平均需求导致部署成本降低,并计算出处理车辆需求的充足网络和计算资源。而这种需求显示出巨大的时空变化。我们随后调查如何在最晚的行程中部署和最快的行程需求将大大地影响我们目前的部署速度。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月24日
Arxiv
0+阅读 · 2023年2月23日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员