Text generation has become one of the most important yet challenging tasks in natural language processing (NLP). The resurgence of deep learning has greatly advanced this field by neural generation models, especially the paradigm of pretrained language models (PLMs). In this paper, we present an overview of the major advances achieved in the topic of PLMs for text generation. As the preliminaries, we present the general task definition and briefly describe the mainstream architectures of PLMs for text generation. As the core content, we discuss how to adapt existing PLMs to model different input data and satisfy special properties in the generated text. We further summarize several important fine-tuning strategies for text generation. Finally, we present several future directions and conclude this paper. Our survey aims to provide text generation researchers a synthesis and pointer to related research.
翻译:产生文本已成为自然语言处理(NLP)中最重要但最具挑战性的任务之一。 深层次学习的恢复通过神经生成模型,特别是预先培训的语言模型的范例,大大推动了这一领域的发展。 在本文中,我们概述了在用于文本生成的PLM专题方面取得的重大进展。作为初步结论,我们介绍了一般任务定义,并简要描述了用于文本生成的PLM的主流结构。作为核心内容,我们讨论如何使现有的PLM适应不同的输入数据模型,并满足生成文本的特殊性。我们进一步总结了用于文本生成的若干重要的微调战略。最后,我们提出了几个未来方向,并完成了本文件。我们的调查旨在为文本生成研究人员提供相关研究的综合和指针。