In-network computing via smart networking devices is a recent trend for modern datacenter networks. State-of-the-art switches with near line rate computing and aggregation capabilities are developed to enable, e.g., acceleration and better utilization for modern applications like big data analytics, and large-scale distributed and federated machine learning. We formulate and study the problem of activating a limited number of in-network computing devices within a network, aiming at reducing the overall network utilization for a given workload. Such limitations on the number of in-network computing elements per workload arise, e.g., in incremental upgrades of network infrastructure, and are also due to requiring specialized middleboxes, or FPGAs, that should support heterogeneous workloads, and multiple tenants. We present an optimal and efficient algorithm for placing such devices in tree networks with arbitrary link rates, and further evaluate our proposed solution in various scenarios and for various tasks. Our results show that having merely a small fraction of network devices support in-network aggregation can lead to a significant reduction in network utilization. Furthermore, we show that various intuitive strategies for performing such placements exhibit significantly inferior performance compared to our solution, for varying workloads, tasks, and link rates.
翻译:通过智能联网设备进行网络内计算是现代数据中心最近的一个趋势。开发了具有近线速率计算和集成能力的先进交换器,以便例如加速和更好地利用诸如大数据分析、大规模分布和联合机械学习等现代应用;我们制定和研究在网络内激活数量有限的网络内计算装置的问题,目的是减少特定工作量的总体网络利用率;对网络内计算要素的每个工作量出现这种限制,例如在网络基础设施的逐步升级方面,还因为需要专门的中间箱或FPGAs,以支持多种不同的工作量和多个租户。我们提出一种最佳和高效的算法,用于将这类装置安置在具有任意连接率的树木网络中,并进一步评价我们在不同情况下和为各种任务提出的解决办法。我们的结果显示,网络内支持的网络设备只有一小部分,就会导致网络利用率的大幅下降。此外,我们表明,执行这种安置的各种直观战略与我们的解决办法、不同的工作量、不同的任务和不同的工作量挂钩相比,其表现率要低得多。