Facing the diversity and growth of the musical field nowadays, the search for precise songs becomes more and more complex. The identity of the singer facilitates this search. In this project, we focus on the problem of identifying the singer by using different methods for feature extraction. Particularly, we introduce the Discrete Wavelet Transform (DWT) for this purpose. To the best of our knowledge, DWT has never been used this way before in the context of singer identification. This process consists of three crucial parts. First, the vocal signal is separated from the background music by using the Robust Principal Component Analysis (RPCA). Second, features from the obtained vocal signal are extracted. Here, the goal is to study the performance of the Discrete Wavelet Transform (DWT) in comparison to the Mel Frequency Cepstral Coefficient (MFCC) which is the most used technique in audio signals. Finally, we proceed with the identification of the singer where two methods have experimented: the Support Vector Machine (SVM), and the Gaussian Mixture Model (GMM). We conclude that, for a dataset of 4 singers and 200 songs, the best identification system consists of the DWT (db4) feature extraction introduced in this work combined with a linear support vector machine for identification resulting in a mean accuracy of 83.96%.


翻译:面对当今音乐领域的多样性和增长,对精密歌曲的搜索变得越来越复杂。 歌唱者的身份为此搜索提供了便利。 在这个项目中, 我们侧重于使用不同功能提取方法识别歌唱者的问题。 特别是, 我们为此引入了分立波流变换( DWT ) 。 据我们所知, DWT 之前从未在歌唱识别方面使用过这种方式。 这一过程由三个关键部分组成。 首先, 声信号通过使用 Robust 主构件分析( RPCA) 将声信号与背景音乐分开。 其次, 提取了获得的声信号的特征。 在这里, 我们的目标是研究Dcrete Wavelet (DWT) 变换(DWT) 的性能, 与Mel Renter Cepstral Covaltive (DMCC) 的性能(DMFCC) 相比, 这是最常用的音频信号技术。 最后, 我们着手确定在两种方法实验中使用的歌手: 支持VMM(SVM) 和 Gautsian Mixturt (GMM) 模型(GMM) 。 我们得出结论, 4 Supet of 4 Six of data supet of dal supidental supulations) laphylated of the the Dmal demal med of Drifulpal medal rifulational missionald of Driformismismal 4) riforpal 4。 我们得出结论, 我们得出结论, 我们得出了D.

0
下载
关闭预览

相关内容

专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年8月27日
Arxiv
6+阅读 · 2018年1月29日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关VIP内容
专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员