The Galerkin method is often employed for numerical integration of evolutionary equations, such as the Navier-Stokes equation or the magnetic induction equation. Application of the method requires solving an equation of the form $P(Av-f)=0$ at each time step, where $v$ is an element of a finite-dimensional space $V$ with a basis satisfying boundary conditions, $P$ is the orthogonal projection on this space and $A$ is a linear operator. Usually the coefficients of $v$ expanded in the basis are found by calculating the matrix of $PA$ acting on $V$ and solving the respective system of linear equations. For physically realistic boundary conditions (such as the no-slip boundary conditions for the velocity, or for a dielectric outside the fluid volume for the magnetic field) the basis is often not orthogonal and solving the problem can be computationally demanding. We propose an algorithm giving an opportunity to reduce the computational cost for such a problem. Suppose there exists a space $W$ that contains $V$, the difference between the dimensions of $W$ and $V$ is small relative to the dimension of $V$, and solving the problem $P(Aw-f)=0$, where $w$ is an element of $W$, requires less operations than solving the original problem. The equation $P(Av-f)=0$ is then solved in two steps: we solve the problem $P(Aw-f)=0$ in $W$, find a correction $h=v-w$ that belongs to a complement to $V$ in $W$, and obtain the solution $w+h$. When the dimension of the complement is small the proposed algorithm is more efficient than the traditional one.
翻译:暂无翻译