This paper presents new approach based on grammar induction called AMLSI Action Model Learning with State machine Interactions. The AMLSI approach does not require a training dataset of plan traces to work. AMLSI proceeds by trial and error: it queries the system to learn with randomly generated action sequences, and it observes the state transitions of the system, then AMLSI returns a PDDL domain corresponding to the system. A key issue for domain learning is the ability to plan with the learned domains. It often happens that a small learning error leads to a domain that is unusable for planning. Unlike other algorithms, we show that AMLSI is able to lift this lock by learning domains from partial and noisy observations with sufficient accuracy to allow planners to solve new problems.
翻译:本文件介绍了基于语法上岗的新做法,即反洗钱国际行动模式与国家机器互动的学习。反洗钱国际行动模式并不要求有一个计划跟踪运行的培训数据集。反洗钱国际行动模式通过试验和错误进行:它询问系统以随机生成的行动序列来学习,并观察系统的状态转型,然后反洗钱国际行动返回一个与系统相对应的PDDL域。域学习的一个关键问题是与所学域进行规划的能力。经常发生的情况是,一个小学习错误导致一个无法用于规划的领域。与其他算法不同,我们表明反洗钱国际行动能够通过从局部和吵闹的观测中学习,以足够准确的方式让规划者解决新的问题,从而解除这一锁。