This paper presents the advantages of alternative data from Super-Apps to enhance user' s income estimation models. It compares the performance of these alternative data sources with the performance of industry-accepted bureau income estimators that takes into account only financial system information; successfully showing that the alternative data manage to capture information that bureau income estimators do not. By implementing the TreeSHAP method for Stochastic Gradient Boosting Interpretation, this paper highlights which of the customer' s behavioral and transactional patterns within a Super-App have a stronger predictive power when estimating user' s income. Ultimately, this paper shows the incentive for financial institutions to seek to incorporate alternative data into constructing their risk profiles.
翻译:本文件介绍了来自超级应用软件的替代数据对提高用户收入估计模型的优点,将这些替代数据源的性能与行业接受的局收入估计员的性能进行比较,后者只考虑金融系统信息;成功显示替代数据能够捕捉局收入估计员所没有的信息。本文通过实施“树树安全AP”的“斯托切梯级推介解释”方法,突出介绍了客户在超级应用软件中的行为和交易模式在估算用户收入时具有更强的预测力。最终,本文件展示了金融机构在构建风险简介时寻求将替代数据纳入其中的激励。