With the advent of the Internet of Things (IoT), e-health has become one of the main topics of research. Due to the sensitivity of patient information, patient privacy seems challenging. Nowadays, patient data is usually stored in the cloud in healthcare programs, making it difficult for users to have enough control over their data. The recent increment in announced cases of security and surveillance breaches compromising patients' privacy call into question the conventional model, in which third-parties gather and control immense amounts of patients' Healthcare data. In this work, we try to resolve the issues mentioned above by using blockchain technology. We propose a blockchain-based protocol suitable for e-health applications that does not require trust in a third party and provides an efficient privacy-preserving access control mechanism. Transactions in our proposed system, unlike Bitcoin, are not entirely financial, and we do not use conventional methods for consensus operations in blockchain like Proof of Work (PoW). It is not suitable for IoT applications because IoT devices have resources-constraints. Usage of appropriate consensus method helps us to increase network security and efficiency, as well as reducing network cost, i.e., bandwidth and processor usage. Finally, we provide security and privacy analysis of our proposed protocol.


翻译:由于病人信息敏感,病人隐私似乎具有挑战性。如今,病人数据通常储存在医疗方案中的云层中,使使用者难以对其数据进行足够的控制。最近宣布的安全和监视侵犯病人隐私的增量引起了对常规模式的质疑,在常规模式中,第三方收集和控制大量的病人保健数据。在这项工作中,我们试图通过使用链锁技术来解决上述问题。我们提出一个适合电子保健应用的基于链式协议,它不需要对第三方的信任,并且提供了一个高效的隐私保护访问控制机制。我们的拟议系统中的交易与比特币不同,并不完全是财务上的,我们不使用常规方法在诸如工作证明(PoW)等闭锁中进行协商一致操作。由于IoT设备有资源紧缺,所以IoT应用不合适。使用适当的协商一致方法有助于我们提高网络安全和效率,以及降低网络的保密成本,即,最后,我们提供我们提议的带宽带系统和使用。

1
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年11月22日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员