We propose an algorithm whose input are parameters $k$ and $r$ and a hypergraph $H$ of rank at most $r$. The algorithm either returns a tree decomposition of $H$ of generalized hypertree width at most $4k$ or 'NO'. In the latter case, it is guaranteed that the hypertree width of $H$ is greater than $k$. Most importantly, the runtime of the algorithm is \emph{FPT} in $k$ and $r$. The approach extends to fractional hypertree width with a slightly worse approximation ($4k+1$ instead of $4k$). We hope that the results of this paper will give rise to a new research direction whose aim is design of FPT algorithms for computation and approximation of hypertree width parameters for restricted classes of hypergraphs.
翻译:我们提出一种算法,其输入的参数为k美元和美元,高射速值为1美元,最高值为1美元。算法要么返回普遍超树宽度的树分解($H),最高值为4K美元,要么“NO”。在后一种情况下,保证超树宽度大于1美元。最重要的是,算法的运行时间是1美元和1美元。这个方法扩大到小超树宽度,近似值略低(4k+1美元,而不是4K美元)。 我们希望,本文的结果将产生新的研究方向,目的是设计FPT算法,用于计算和接近限制的超高光谱类别的超树宽度参数。