Generative Adversarial Networks (GANs) are the most popular image generation models that have achieved remarkable progress on various computer vision tasks. However, training instability is still one of the open problems for all GAN-based algorithms. Quite a number of methods have been proposed to stabilize the training of GANs, the focuses of which were respectively put on the loss functions, regularization and normalization technologies, training algorithms, and model architectures. Different from the above methods, in this paper, a new perspective on stabilizing GANs training is presented. It is found that sometimes the images produced by the generator act like adversarial examples of the discriminator during the training process, which may be part of the reason causing the unstable training of GANs. With this finding, we propose the Direct Adversarial Training (DAT) method to stabilize the training process of GANs. Furthermore, we prove that the DAT method is able to minimize the Lipschitz constant of the discriminator adaptively. The advanced performance of DAT is verified on multiple loss functions, network architectures, hyper-parameters, and datasets. Specifically, DAT achieves significant improvements of 11.5% FID on CIFAR-100 unconditional generation based on SSGAN, 10.5% FID on STL-10 unconditional generation based on SSGAN, and 13.2% FID on LSUN-Bedroom unconditional generation based on SSGAN. Code will be available at https://github.com/iceli1007/DAT-GAN


翻译:Adversarial Networks(GANs)是最受欢迎的形象生成模型,在各种计算机视觉任务方面已经取得了显著的进展,然而,培训不稳定仍然是所有基于GAN的算法的公开问题之一。提出了许多方法来稳定GANs的培训,这些方法的重点分别放在损失功能、正规化和正常化技术、培训算法和模型结构上。与上述方法不同,本文介绍了稳定GANs培训的新观点。发现发电机产生的图像有时类似于培训过程中歧视者的对抗性例子,这可能是造成GANs培训不稳定的原因之一。我们提出了直接的Aversarial培训方法,分别放在了GANs的培训进程、正规化和正规化技术、培训算法和模型结构上。此外,我们证明DAT方法能够最大限度地减少SFIDS的利普西常态常态。DAT的先进表现通过多种损失功能的改进、网络结构、超参数和数据集成,这可能是造成GANSANs培训不稳定的原因之一。具体地说,基于SFIRS-AN%的SAR-ANATs 以SAR5和SARISalimal-100为基础,以SARCM%为基础,以S-SARCAN-AN5以S-AN-SADM 建立以S-100为基础。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月15日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员