Inverse problems occur in a variety of parameter identification tasks in engineering. Such problems are challenging in practice, as they require repeated evaluation of computationally expensive forward models. We introduce a unifying framework of multilevel optimization that can be applied to a wide range of optimization-based solvers. Our framework provably reduces the computational cost associated with evaluating the expensive forward maps stemming from various physical models. To demonstrate the versatility of our analysis, we discuss its implications for various methodologies including multilevel (accelerated, stochastic) gradient descent, a multilevel ensemble Kalman inversion and a multilevel Langevin sampler. We also provide numerical experiments to verify our theoretical findings.
翻译:工程中的各种参数识别任务存在逆向问题。 这些问题在实践中具有挑战性,因为它们需要反复评估计算昂贵的远期模型。 我们引入一个多层次优化的统一框架,可以适用于各种基于优化的解决方案。 我们的框架可以明显地降低与评估各种物理模型产生的昂贵远期地图有关的计算成本。 为了证明我们的分析的多功能性,我们讨论了其对多种方法的影响,包括多层次(加速、随机)梯度下限、多层次的共性卡尔曼内流和多层次的兰格文取样员。 我们还提供了数字实验,以核实我们的理论结论。