Probabilistic graphs are challenging to visualize using the traditional node-link diagram. Encoding edge probability using visual variables like width or fuzziness makes it difficult for users of static network visualizations to estimate network statistics like densities, isolates, path lengths, or clustering under uncertainty. We introduce Network Hypothetical Outcome Plots (NetHOPs), a visualization technique that animates a sequence of network realizations sampled from a network distribution defined by probabilistic edges. NetHOPs employ an aggregation and anchoring algorithm used in dynamic and longitudinal graph drawing to parameterize layout stability for uncertainty estimation. We present a community matching algorithm to enable visualizing the uncertainty of cluster membership and community occurrence. We describe the results of a study in which 51 network experts used NetHOPs to complete a set of common visual analysis tasks and reported how they perceived network structures and properties subject to uncertainty. Participants' estimates fell, on average, within 11% of the ground truth statistics, suggesting NetHOPs can be a reasonable approach for enabling network analysts to reason about multiple properties under uncertainty. Participants appeared to articulate the distribution of network statistics slightly more accurately when they could manipulate the layout anchoring and the animation speed. Based on these findings, we synthesize design recommendations for developing and using animated visualizations for probabilistic networks.
翻译:使用传统的节点链接图进行视觉化分析, 概率图具有挑战性。 使用宽度或模糊度等视觉变量来编码边缘概率, 使得静态网络可视化用户难以估计网络统计数据, 如密度、 孤立度、 路径长度或集群的不确定性。 我们引入了网络假设结果图( NetHOPs), 这是一种可视化技术, 从概率边缘界定的网络分布中提取网络实现的序列。 NetHOPs 使用动态和纵向图绘制时使用的聚合和固定算法, 以参数化布局稳定性, 以进行不确定性估计。 我们提出了一个社区匹配算法, 以便能够直观地显示集群成员和社区发生情况的不确定性。 我们描述一项研究的结果, 其中有51个网络专家使用网络网络模拟结果来完成一套共同的视觉分析任务, 并报告他们如何看待网络结构和属性的不确定性。 参与者估计平均在地面真实性统计的11%范围内, 表明网络化分析员可以合理使用一种方法, 使网络分析员在不确定性下对多种属性进行推理。 参与者们似乎会分析, 以精确地分析这些图像化的方式分析网络的模型, 。