Transfer learning has become a standard practice to mitigate the lack of labeled data in medical classification tasks. Whereas finetuning a downstream task using supervised ImageNet pretrained features is straightforward and extensively investigated in many works, there is little study on the usefulness of self-supervised pretraining. In this paper, we assess the transferability of ImageNet self-supervisedpretraining by evaluating the performance of models initialized with pretrained features from three self-supervised techniques (SimCLR, SwAV, and DINO) on selected medical classification tasks. The chosen tasks cover tumor detection in sentinel axillary lymph node images, diabetic retinopathy classification in fundus images, and multiple pathological condition classification in chest X-ray images. We demonstrate that self-supervised pretrained models yield richer embeddings than their supervised counterpart, which benefits downstream tasks in view of both linear evaluation and finetuning. For example, in view of linear evaluation at acritically small subset of the data, we see an improvement up to 14.79% in Kappa score in the diabetic retinopathy classification task, 5.4% in AUC in the tumor classification task, 7.03% AUC in the pneumonia detection, and 9.4% in AUC in the detection of pathological conditions in chest X-ray. In addition, we introduce Dynamic Visual Meta-Embedding (DVME) as an end-to-end transfer learning approach that fuses pretrained embeddings from multiple models. We show that the collective representation obtained by DVME leads to a significant improvement in the performance of selected tasks compared to using a single pretrained model approach and can be generalized to any combination of pretrained models.


翻译:转移学习已经成为减少医疗分类任务中缺少标签数据的标准做法。 使用受监督的图像网络预先培训的特征对下游任务进行微调是直截了当的,许多工作对此进行了广泛调查,但对于自我监督的预培训的有用性研究很少。 在本文中,我们通过评价由三种自我监督的医疗分类任务(SimCLR、Swavav和DINO)的预先培训特点而启动的模型的性能来评估自我监督的预培训前训练。 所选择的任务包括使用受监督的图像网络预培训特征对下游任务进行微调。 所选择的任务包括:在监控的系统性轴轴性淋巴性淋巴图像中进行肿瘤检测,对基金图像进行糖尿病性再调节,对胸前训练进行多重病理病理学分类。 自我监督前模型的自我监督前训练模式比受监督的对应模式(SimCLRVL、SVVV和DINO)的性能评估,我们发现通过最终的性能提升到14.79%。 在A- Demodi- remodal AS AS 任务分类中,我们通过自我评估的自我评估A- remal- mission- mission- mission A. breal- deal- dealation a. 5.- dead- deal- droduction A.

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Arxiv
0+阅读 · 2022年2月1日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
19+阅读 · 2021年4月8日
VIP会员
相关VIP内容
相关资讯
【2019-26期】This Week in Extracellular Vesicles
外泌体之家
11+阅读 · 2019年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Top
微信扫码咨询专知VIP会员