We consider the problem of morphing between two planar drawings of the same triangulated graph, maintaining straight-line planarity. A paper in SODA 2013 gave a morph that consists of $O(n^2)$ steps where each step is a linear morph that moves each of the $n$ vertices in a straight line at uniform speed. However, their method imitates edge contractions so the grid size of the intermediate drawings is not bounded and the morphs are not good for visualization purposes. Using Schnyder embeddings, we are able to morph in $O(n^2)$ linear morphing steps and improve the grid size to $O(n)\times O(n)$ for a significant class of drawings of triangulations, namely the class of weighted Schnyder drawings. The morphs are visually attractive. Our method involves implementing the basic "flip" operations of Schnyder woods as linear morphs.
翻译:我们考虑的是同一三角图的两张平面图的变形问题,它保持直线平面。2013年SODA的一张纸给出了一个由美元(n)2美元阶梯构成的变形,每一步都是线性变形,以统一速度将每张美元脊椎移动成直线线线。然而,它们的方法模仿边缘收缩,使中间图画的网格大小没有被捆绑,变形对可视化目的不起作用。使用Schnyder嵌入器,我们可以以美元(n)2美元线性变形步骤变形,并将网格大小提高到一大批三角图案的O(n)/time O(n)美元,即加权的Schnyder绘图类。这些变形图案具有视觉吸引力。我们的方法是将Schnyder树林的基本“翻转动”操作作为线形进行。