We study the $generalized~model~counting~problem$, defined as follows: given a database, and a set of deterministic tuples, count the number of subsets of the database that include all deterministic tuples and satisfy the query. This problem is computationally equivalent to the evaluation of the query over a tuple-independent probabilistic database where all tuples have probabilities in $\{0,\frac{1}{2},1\}$. Previous work has established a dichotomy for Unions of Conjunctive Queries (UCQ) when the probabilities are arbitrary rational numbers, showing that, for each query, its complexity is either in polynomial time or #P-hard. The query is called $safe$ in the first case, and $unsafe$ in the second case. Here, we strengthen the hardness proof, by proving that an unsafe UCQ query remains #P-hard even if the probabilities are restricted to $\{0,\frac{1}{2},1\}$. This requires a complete redesign of the hardness proof, using new techniques. A related problem is the $model~counting~problem$, which asks for the probability of the query when the input probabilities are restricted to $\{0,\frac{1}{2}\}$. While our result does not extend to model counting for all unsafe UCQs, we prove that model counting is #P-hard for a class of unsafe queries called Type-I forbidden queries.


翻译:我们研究的是Generalized~model~计算~问题$,定义如下: 给一个数据库和一套确定性图例, 计数数据库中包含所有确定性图例并满足查询的子集的数量。 这个问题在计算上相当于对一个图普尔独立概率数据库查询的评估, 所有图普尔的概率在$0,\frac{1}2}, 1 美元。 以前的工作已经为不安全统合性联盟( OCQ) 设定了一种二分法, 当概率为任意性的合理数字时, 计数数据库中包含所有确定性图例图例的子集数量。 这个问题在计算上相当于对查询的“ $ safetical $, $0,\\\\\\\\\\\\\\ 4美元。 证明一个不安全的UCUC 模型仍然很难 # P-, 即使所有概率都限为$0,\\\\\\\\2}, 美元。 这要求对每个查询的精确性进行精确性查询, 这需要完全的精确度的计算。 精确度的计算。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
9+阅读 · 2017年7月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月12日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python图像处理,366页pdf,Image Operators Image Processing in Python
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
9+阅读 · 2017年7月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员