The generalization of deep learning has helped us, in the past, address challenges such as malware identification and anomaly detection in the network security domain. However, as effective as it is, scarcity of memory and processing power makes it difficult to perform these tasks in Internet of Things (IoT) devices. This research finds an easy way out of this bottleneck by depreciating the need for feature engineering and subsequent processing in machine learning techniques. In this study, we introduce a Featureless machine learning process to perform anomaly detection. It uses unprocessed byte streams of packets as training data. Featureless machine learning enables a low cost and low memory time-series analysis of network traffic. It benefits from eliminating the significant investment in subject matter experts and the time required for feature engineering.


翻译:深层学习的普及过去帮助我们解决了网络安全领域恶意软件识别和异常现象探测等挑战,然而,记忆力和处理力的缺乏虽然有效,但难以在Things(IoT)设备互联网上完成这些任务。这项研究发现,通过淡化对特征工程的需求和随后对机器学习技术的处理,很容易摆脱这一瓶颈。在这项研究中,我们引入了一种无特色的机器学习程序,以进行异常现象检测。它使用未经处理的零星包流作为培训数据。无特征机器学习使得对网络流量的低成本和低记忆时间序列分析成为了一种低成本和低记忆时间序列分析。它从消除对主题专家的大量投资和对特征工程所需的时间中获益。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年3月16日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Arxiv
0+阅读 · 2021年10月26日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Top
微信扫码咨询专知VIP会员