Drawing independent samples from high-dimensional probability distributions represents the major computational bottleneck for modern algorithms, including powerful machine learning frameworks such as deep learning. The quest for discovering larger families of distributions for which sampling can be efficiently realized has inspired an exploration beyond established computing methods and turning to novel physical devices that leverage the principles of quantum computation. Quantum annealing embodies a promising computational paradigm that is intimately related to the complexity of energy landscapes in Gibbs distributions, which relate the probabilities of system states to the energies of these states. Here, we study the sampling properties of physical realizations of quantum annealers which are implemented through programmable lattices of superconducting flux qubits. Comprehensive statistical analysis of the data produced by these quantum machines shows that quantum annealers behave as samplers that generate independent configurations from low-temperature noisy Gibbs distributions. We show that the structure of the output distribution probes the intrinsic physical properties of the quantum device such as effective temperature of individual qubits and magnitude of local qubit noise, which result in a non-linear response function and spurious interactions that are absent in the hardware implementation. We anticipate that our methodology will find widespread use in characterization of future generations of quantum annealers and other emerging analog computing devices.


翻译:从高维概率分布中独立抽取的样本是现代算法的主要计算瓶颈,包括深层学习等强大的机器学习框架。探索能够有效实现取样的分布型群的大型分布型群,激发了超越既定计算方法的探索,转而采用利用量子计算原则的新型物理装置。Qantum Annealing 体现了一种与Gibbs分布中能源景观的复杂性密切相关的有希望的计算模式,它与Gibbs分布中能源景观的复杂性密切相关,将系统状态的概率与这些国家的能量联系起来。在这里,我们研究通过超导通量通量 ⁇ 的可编程胶囊执行量子的物理实现的物理特性。对这些量子麻醉器产生的数据进行全面的统计分析表明,量子麻醉器作为采样器,从低温的杂音分布中产生独立的配置。我们显示,输出分布结构对量子装置的内在物理特性进行了探测,例如个体品位的有效温度和本地品位噪音的大小。通过非线状定式的量态反应,导致非线型反应功能和未来模拟反应,我们逐渐的计算方法将发现,而没有新的硬质反应。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
38+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
已删除
将门创投
9+阅读 · 2017年10月17日
Quantum field-theoretic machine learning
Arxiv
0+阅读 · 2021年2月18日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
38+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
273+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
9+阅读 · 2017年10月17日
Top
微信扫码咨询专知VIP会员