Collaborative table-carrying is a complex task due to the continuous nature of the action and state-spaces, multimodality of strategies, existence of obstacles in the environment, and the need for instantaneous adaptation to other agents. In this work, we present a method for predicting realistic motion plans for cooperative human-robot teams on a table-carrying task. Using a Variational Recurrent Neural Network, VRNN, to model the variation in the trajectory of a human-robot team over time, we are able to capture the distribution over the team's future states while leveraging information from interaction history. The key to our approach is in our model's ability to leverage human demonstration data and generate trajectories that synergize well with humans during test time. We show that the model generates more human-like motion compared to a baseline, centralized sampling-based planner, Rapidly-exploring Random Trees (RRT). Furthermore, we evaluate the VRNN planner with a human partner and show its ability to both generate more human-like paths and achieve higher task success rate than RRT can while planning with a human. Finally, we demonstrate that a LoCoBot using the VRNN planner can complete the task successfully with a human controlling another LoCoBot.
翻译:由于行动和州空间的连续性、战略的多式联运、环境障碍的存在、以及需要立即适应其他物剂,合作制表工作是一项复杂的任务。 在这项工作中,我们提出了一个方法,用于预测合作人类机器人团队在排列表任务中的现实动作计划。我们利用VRNNN这个变异的经常性神经系统网络来模拟人类机器人团队的轨迹随时间推移的变异。我们还能够利用互动历史中的信息在团队的未来国家中捕捉分布。我们的方法的关键在于我们的模型是否有能力利用人类的演示数据并产生在测试期间与人类同步的轨迹。我们表明,模型产生的人型动作比基线、集中取样计划、快速勘探随机树(RRT)要多。此外,我们用一个人类伙伴对VRNNN计划进行评估,并显示它有能力既生成更多的人型路径,又实现比RRT成功率高于R。我们用LONNO计划成功地规划了另一个人型任务。我们用LONNW(LON)计划成功展示了另一个人型任务。