Recognition tasks, such as object recognition and keypoint estimation, have seen widespread adoption in recent years. Most state-of-the-art methods for these tasks use deep networks that are computationally expensive and have huge memory footprints. This makes it exceedingly difficult to deploy these systems on low power embedded devices. Hence, the importance of decreasing the storage requirements and the amount of computation in such models is paramount. The recently proposed Lottery Ticket Hypothesis (LTH) states that deep neural networks trained on large datasets contain smaller subnetworks that achieve on par performance as the dense networks. In this work, we perform the first empirical study investigating LTH for model pruning in the context of object detection, instance segmentation, and keypoint estimation. Our studies reveal that lottery tickets obtained from ImageNet pretraining do not transfer well to the downstream tasks. We provide guidance on how to find lottery tickets with up to 80% overall sparsity on different sub-tasks without incurring any drop in the performance. Finally, we analyse the behavior of trained tickets with respect to various task attributes such as object size, frequency, and difficulty of detection.


翻译:识别任务,如对象识别和关键点估计,近年来被广泛采用。这些任务的大多数最先进的方法都使用计算成本昂贵、内存足迹巨大的深网络。这使得极难将这些系统安装在低电源嵌入装置上。因此,减少储存要求和这类模型中的计算数量至关重要。最近提出的彩票票票伪证(LTH)表明,在大型数据集方面受过培训的深神经网络中,小子网络与密集网络一样,其性能较弱。在这项工作中,我们进行了第一次实验研究,在物体探测、实例分割和关键点估计方面,对模型运行的LTH进行了调查。我们的研究显示,从图象网前培训获得的彩票没有很好地转移到下游任务。我们指导如何在不同的子任务上找到高达80%的总体抽奖券,而不引起任何下降。最后,我们分析了在诸如对象大小、频率和探测困难等各种任务属性方面经过培训的机票的行为。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年6月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月6日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员