Re-ranking models refine the item recommendation list generated by the prior global ranking model with intra-item relationships. However, most existing re-ranking solutions refine recommendation list based on the implicit feedback with a shared re-ranking model, which regrettably ignore the intra-item relationships under diverse user intentions. In this paper, we propose a novel Intention-aware Re-ranking Model with Dynamic Transformer Encoder (RAISE), aiming to perform user-specific prediction for each target user based on her intentions. Specifically, we first propose to mine latent user intentions from text reviews with an intention discovering module (IDM). By differentiating the importance of review information with a co-attention network, the latent user intention can be explicitly modeled for each user-item pair. We then introduce a dynamic transformer encoder (DTE) to capture user-specific intra-item relationships among item candidates by seamlessly accommodating the learnt latent user intentions via IDM. As such, RAISE is able to perform user-specific prediction without increasing the depth (number of blocks) and width (number of heads) of the prediction model. Empirical study on four public datasets shows the superiority of our proposed RAISE, with up to 13.95%, 12.30%, and 13.03% relative improvements evaluated by Precision, MAP, and NDCG respectively.
翻译:重新排序模型改进了先前全球排名模式产生的项目建议清单,并带有项目内部关系。然而,大多数现有的重新排序解决方案根据隐含的反馈和共享的重新排序模式完善了建议清单,这令人遗憾地忽视了不同用户的意图下的项目内部关系。在本文件中,我们提出了一个新的具有动态变压器(ISAE)的有意识重新排序模型,目的是根据每个目标用户的意图,对每个目标用户进行针对用户的预测。具体地说,我们首先提议在文本审查中用一个意图发现模块(IDM)来消除潜在用户的意图。通过共同使用网络区分审查信息的重要性,可以明确为每个用户项目组合设计潜在的用户意图模型。然后我们引入一个动态变压器编码器(DTE),通过动态变压器(ISAD)对所学到的潜在用户意图进行完善,从而捕捉到项目候选人中用户特有的内部项目关系。因此,系统能够进行针对用户的预测而不增加预测模型的深度(区块数)和宽度(负责人人数)。通过共同使用网络对信息进行区分,从而可以明确为每个用户提供信息,对每个用户设计项目组合进行模型进行模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型模型模型,显示,显示,显示,显示,显示,显示,13.03和13.3%的比率,分别显示的精确度,并显示我们对13.的精确率的精确度,并评价的精确度,以及ADDC的精确度,分别的精确度为13)。