The impact of individual scientists is commonly quantified using citation-based measures. The most common such measure is the h-index. A scientist's h-index affects hiring, promotion, and funding decisions, and thus shapes the progress of science. Here we report a large-scale study of scientometric measures, analyzing millions of articles and hundreds of millions of citations across four scientific fields and two data platforms. We find that the correlation of the h-index with awards that indicate recognition by the scientific community has substantially declined. These trends are associated with changing authorship patterns. We show that these declines can be mitigated by fractional allocation of citations among authors, which has been discussed in the literature but not implemented at scale. We find that a fractional analogue of the h-index outperforms other measures as a correlate and predictor of scientific awards. Our results suggest that the use of the h-index in ranking scientists should be reconsidered, and that fractional allocation measures such as h-frac provide more robust alternatives. An interactive visualization of our work can be found at https://h-frac.org


翻译:科学家个人的影响通常通过以引证为基础的措施加以量化。最常见的此类措施是h-index。科学家的h-index影响聘用、晋升和供资决定,从而影响科学进步。我们在这里报告对科学计量的大规模研究,分析了四个科学领域和两个数据平台的数百万篇文章和数以亿计的引文。我们发现,h-index与表明科学界承认的奖项的相关性已经大大下降。这些趋势与作者模式的变化有关。我们表明,这些下降可以通过作者对引文的分数分配来缓解,这些引文已在文献中讨论过,但没有在规模上执行。我们发现,该h-index的分数模拟比其他措施更能成为科学奖项的关联性和预测。我们的结果表明,应当重新考虑在排名科学家中使用h-frac等指数的情况,以及像h-frac这样的分数分配措施提供了更可靠的替代方法。我们工作的交互视觉化可见https://h-frac.org。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
115+阅读 · 2020年1月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年12月2日
Arxiv
27+阅读 · 2018年4月12日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
115+阅读 · 2020年1月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员