Bibliographic metrics are commonly utilized for evaluation purposes within academia, often in conjunction with other metrics. These metrics vary widely across fields and change with the seniority of the scholar; consequently, the only way to interpret these values is by comparison with other academics within the same field and of similar seniority. We propose a simple extension that allows us to create metrics that are easy to interpret and can make comparisons easier. Our basic idea is to create benchmarks and then utilize percentile indicators to measure the performance of a scholar or publication over time. These percentile-based metrics allow for comparison of people and publications of different seniority and are easily interpretable. Furthermore, we demonstrate that the rank percentile indicators have reasonable predictive power. The publication indicator is highly stable over time, while the scholar indicator exhibits short-term stability and can be predicted via a simple linear regression model. While more advanced models offer slightly superior performance, the simplicity and interpretability of the simple model impose significant advantages over the additional complexity of other models.


翻译:书目量度通常用于学术界的评价目的,通常与其他指标一起使用。这些量度在不同领域差异很大,随着学者的资历而变化;因此,解释这些值的唯一办法是与同一领域和类似资历的其他学者进行比较。我们建议一个简单的扩展,使我们能够创建易于解释和更容易比较的量度。我们的基本想法是制定基准,然后使用百分位指标衡量学者或出版的成绩。这些百分位基准可以比较不同资历的人和出版物,而且易于解释。此外,我们证明等级百分位指标具有合理的预测能力。出版指标随着时间的推移非常稳定,而学术指标显示短期稳定性,可以通过简单的线性回归模型预测。较先进的模型提供稍高的性能,而简单模型的简便性和可解释性则比其他模型的复杂程度高得多。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
65+阅读 · 2020年9月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
已删除
将门创投
11+阅读 · 2019年8月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年5月21日
Compression of Deep Learning Models for Text: A Survey
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
65+阅读 · 2020年9月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员