Deep learning is a thriving field currently stuffed with many practical applications and active research topics. It allows computers to learn from experience and to understand the world in terms of a hierarchy of concepts, with each being defined through its relations to simpler concepts. Relying on the strong capabilities of deep learning, we propose a convolutional generative adversarial network-based (Conv-GAN) framework titled MalFox, targeting adversarial malware example generation against third-party black-box malware detectors. Motivated by the rival game between malware authors and malware detectors, MalFox adopts a confrontational approach to produce perturbation paths, with each formed by up to three methods (namely Obfusmal, Stealmal, and Hollowmal) to generate adversarial malware examples. To demonstrate the effectiveness of MalFox, we collect a large dataset consisting of both malware and benignware programs, and investigate the performance of MalFox in terms of accuracy, detection rate, and evasive rate of the generated adversarial malware examples. Our evaluation indicates that the accuracy can be as high as 99.0% which significantly outperforms the other 12 well-known learning models. Furthermore, the detection rate is dramatically decreased by 56.8% on average, and the average evasive rate is noticeably improved by up to 56.2%.
翻译:深层学习是一个充满许多实际应用和积极研究课题的蓬勃领域。 它使计算机能够从经验中学习,并理解世界的概念层次,每个概念都通过其关系来界定,形成更简单的概念。 依靠深层学习的强大能力,我们提议了一个名为 MalFox (Conv-GAN) 、 以对抗第三方黑盒恶意软件探测器为目标的对抗性对抗性对抗性对抗性敌对网络框架(Conv-GAN) 。 受恶意软件作者和恶意软件探测器竞争游戏的驱动, MalFox 采用对抗性方法来产生扰动性路径, 每种方法都由三种方法( 即Obfusmal、Tempmal和Hollowmal) 组成, 产生对抗性恶意软件实例。 为了证明 MalFox 的功效, 我们收集了一个庞大的数据集, 包括恶意软件和恶意软件程序, 并调查MalFox 在准确性、 检测率和生成的对抗性恶意软件测试率方面的表现。 我们的评估表明, 准确性方法可以高达99. 0 %,, 每种方法由三种方法组成, 大大超过56% 的检测率。