Over the last decade, several studies have investigated the weaknesses of Android malware detectors against adversarial examples by proposing novel evasion attacks; however, the practicality of most studies in manipulating real-world malware is arguable. The majority of studies have assumed attackers know the details of the target classifiers used for malware detection, while in real life, malicious actors have limited access to the target classifiers. This paper presents a practical evasion attack, EvadeDroid, to circumvent black-box Android malware detectors. In addition to generating real-world adversarial malware, the proposed evasion attack can preserve the functionality of the original malware samples. EvadeDroid applies a set of functionality-preserving transformations to morph malware instances into benign ones using an iterative and incremental manipulation strategy. The proposed manipulation technique is a novel, query-efficient optimization algorithm with the aim of finding and injecting optimal sequences of transformations into malware samples. Our empirical evaluation demonstrates the efficacy of EvadeDroid under hard- and soft-label attacks. Moreover, EvadeDroid is capable to generate practical adversarial examples with only a small number of queries, with evasion rate of 81%, 73%, and 75% for DREBIN, Sec-SVM, and MaMaDroid, respectively. Finally, we show that EvadeDroid is able to preserve its stealthiness against four popular commercial antivirus, thus demonstrating its feasibility in the real world.


翻译:在过去的十年中,一些研究调查了Android恶意软件探测器的弱点,通过提出新颖的规避攻击;然而,大多数关于操纵真实世界恶意软件的研究的实用性是可论证的。大多数研究都假定攻击者知道用于恶意软件检测的目标分类器的细节,而在现实生活中,恶意行为者接触目标分类器的渠道有限。本文介绍了一种实际的规避攻击,EvadeDroid,以绕过黑盒子和机器人恶意软件探测器。除了产生真实世界的对抗恶意软件外,拟议的规避攻击还能维护原始恶意软件样品的功能。EvadeDroid运用一套功能保护转换功能的转换方法,将恶意软件的功能转换成良性软件,使用迭代和渐进的操纵战略。提议的操纵技术是一种创新的、有查询效率的优化算法,目的是寻找和将最佳的序列转换成恶意软件样品。我们的经验评估显示EvadeDroid在硬和软标签攻击下的效率。此外,EvadeDroid机器人能够产生实用的对抗性欺诈例子,只有少量的查询,而真实的规避率分别为81%、73%、75M和75。我们最后展示了它的真实可行性。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
专知会员服务
25+阅读 · 2021年1月21日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
A Survey on GANs for Anomaly Detection
Arxiv
7+阅读 · 2021年9月14日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员