Complex networks have complete subgraphs such as nodes, edges, triangles, etc., referred to as cliques of different orders. Notably, cavities consisting of higher-order cliques have been found playing an important role in brain functions. Since searching for the maximum clique in a large network is an NP-complete problem, we propose using k-core decomposition to determine the computability of a given network subject to limited computing resources. For a computable network, we design a search algorithm for finding cliques of different orders, which also provides the Euler characteristic number. Then, we compute the Betti number by using the ranks of the boundary matrices of adjacent cliques. Furthermore, we design an optimized algorithm for finding cavities of different orders. Finally, we apply the algorithm to the neuronal network of C. elegans in one dataset, and find all of its cliques and some cavities of different orders therein, providing a basis for further mathematical analysis and computation of the structure and function of the C. elegans neuronal network.
翻译:复杂的网络有完整的子集, 如节点、 边缘、 三角等, 被称为不同命令的晶体。 值得注意的是, 由更高顺序的晶体组成的孔在大脑功能中发挥了重要作用 。 由于在大型网络中搜索最大晶体是一个NP完整的问题, 我们提议使用 k- 核心分解来决定特定网络的可计算性, 但要使用有限的计算资源。 对于一个可计算网络, 我们设计一个搜索算法, 以查找不同命令的晶体, 同时也提供 Euler 特征编号 。 然后, 我们用相邻的晶体的边界矩阵的等级来计算贝蒂号 。 此外, 我们设计了一种优化算法, 以查找不同序列的孔。 最后, 我们将算法应用到一个数据集中的 C. elegans 的神经网络, 并查找其全部的晶体和其中不同顺序的孔, 为进一步进行数学分析和计算C. elgans 神经网络的结构和功能提供基础。