We present a new machine learning library for computing metrics of string compactification spaces. We benchmark the performance on Monte-Carlo sampled integrals against previous numerical approximations and find that our neural networks are more sample- and computation-efficient. We are the first to provide the possibility to compute these metrics for arbitrary, user-specified shape and size parameters of the compact space and observe a linear relation between optimization of the partial differential equation we are training against and vanishing Ricci curvature.
翻译:我们推出了一个新的机器学习图书馆,用于计算弦压缩空间的测量标准。我们根据先前的数值近似值来衡量蒙特-卡洛抽样集成体的性能,发现我们的神经网络更具样本和计算效率。我们首先提供了为紧凑空间任意、用户指定的形状和大小参数计算这些计量标准的可能性,并观察了我们所训练的局部差异方程式优化与Ricci曲线消失之间的线性关系。